Exploratory Data Analysis (EDA): A Step-by-Step Guide
📊 Exploratory Data Analysis (EDA): A Step-by-Step Guide
✅ What is EDA?
Exploratory Data Analysis (EDA) is the process of analyzing datasets to summarize their main characteristics, often using visual methods. It helps you understand the data before applying any machine learning or statistical models.
🪜 Step-by-Step EDA Process
Step 1: Understand the Dataset
Load the data using tools like pandas.
Check structure:
Number of rows and columns
Data types of each column
Sample rows (df.head())
python
Copy
Edit
import pandas as pd
df = pd.read_csv("your_dataset.csv")
print(df.shape)
print(df.dtypes)
df.head()
Step 2: Handle Missing Values
Check for null or missing values.
Decide how to handle them:
Drop (df.dropna())
Fill (df.fillna(value))
Impute (mean, median, mode)
python
Copy
Edit
df.isnull().sum()
df = df.fillna(df.mean()) # Example: fill numeric NaNs with column mean
Step 3: Summary Statistics
Use .describe() to get basic statistics:
Count, mean, std, min, max, percentiles
python
Copy
Edit
df.describe()
Use .value_counts() for categorical data.
Step 4: Univariate Analysis (Single Variable)
Visualize distributions:
Histograms for numeric variables
Bar charts for categorical variables
python
Copy
Edit
import seaborn as sns
import matplotlib.pyplot as plt
sns.histplot(df['age'], kde=True)
plt.show()
df['gender'].value_counts().plot(kind='bar')
plt.show()
Step 5: Bivariate Analysis (Two Variables)
Understand relationships between variables:
Numerical vs. Numerical → Scatter plots, correlation matrix
Categorical vs. Numerical → Box plots
Categorical vs. Categorical → Crosstab, stacked bar charts
python
Copy
Edit
sns.scatterplot(x='height', y='weight', data=df)
sns.boxplot(x='gender', y='income', data=df)
Step 6: Correlation Analysis
Check how numerical variables are related
Use a correlation matrix and heatmap
python
Copy
Edit
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.show()
Step 7: Outlier Detection
Use box plots and z-scores to detect outliers
Decide whether to keep, remove, or transform them
python
Copy
Edit
sns.boxplot(x=df['salary'])
Step 8: Feature Engineering (Optional)
Create new variables based on existing ones
Binning, transformations, encoding categories
Useful for improving model performance later
Step 9: Document Insights
Summarize key findings:
Trends
Anomalies
Relationships
Use markdown, notebooks, or dashboards
🛠️ Tools Commonly Used in EDA
Tool/Library Purpose
pandas Data manipulation and cleaning
numpy Numerical operations
matplotlib Basic plotting
seaborn Advanced statistical plots
plotly Interactive visualizations
Jupyter Interactive exploration and reporting
🏁 Conclusion
Exploratory Data Analysis (EDA) is a crucial first step in any data science project. It helps you:
Understand your data deeply
Uncover patterns and anomalies
Prepare the data for modeling
Good EDA leads to better models and smarter decisions.
Learn Data Science Course in Hyderabad
Read More
Data Wrangling Techniques Every Data Scientist Should Know
How to Handle Missing Data in Data Science
The Art of Data Cleaning: Why It Matters
Data Analysis and Visualization in Data Science
Visit Our Quality Thought Training Institute in Hyderabad
Comments
Post a Comment