How to Automate Data Science Workflows with Apache Airflow

 What is Apache Airflow?


Apache Airflow is an open-source platform to programmatically author, schedule, and monitor workflows as DAGs (Directed Acyclic Graphs) using Python.


πŸš€ Typical Use Cases in Data Science


Data ingestion from APIs or databases


Data cleaning and transformation (ETL/ELT)


Feature engineering and preprocessing


Model training and evaluation


Model deployment and monitoring


Scheduled reports and dashboards


🧱 Key Concepts

Term Description

DAG A collection of tasks with dependencies and execution order.

Task A unit of work (e.g., Python function, Bash command, Spark job).

Operator Defines what a task does (PythonOperator, BashOperator, etc.)

Scheduler Triggers DAGs according to time or event conditions.

Executor Handles how tasks are run (e.g., Sequential, Local, Celery).

πŸ› ️ Steps to Automate a Data Science Workflow

1. Install Apache Airflow

pip install apache-airflow

airflow db init

airflow users create --username admin --password admin --role Admin --email admin@example.com --firstname Admin --lastname User

airflow webserver --port 8080

airflow scheduler


2. Define a DAG


Create a Python file in your Airflow dags/ directory, e.g., dags/ml_pipeline.py.


from airflow import DAG

from airflow.operators.python import PythonOperator

from datetime import datetime


def extract_data():

    print("Extracting data...")


def preprocess_data():

    print("Preprocessing...")


def train_model():

    print("Training model...")


def evaluate_model():

    print("Evaluating model...")


with DAG('ml_pipeline',

         start_date=datetime(2025, 1, 1),

         schedule_interval='@daily',

         catchup=False) as dag:


    t1 = PythonOperator(task_id='extract_data', python_callable=extract_data)

    t2 = PythonOperator(task_id='preprocess_data', python_callable=preprocess_data)

    t3 = PythonOperator(task_id='train_model', python_callable=train_model)

    t4 = PythonOperator(task_id='evaluate_model', python_callable=evaluate_model)


    t1 >> t2 >> t3 >> t4  # Define dependencies


3. Run the Workflow


Go to the Airflow UI at http://localhost:8080


Trigger the DAG manually or let it run on schedule


Monitor logs and task statuses


πŸ”„ Typical Data Science Workflow as a DAG

extract_data

     ↓

preprocess_data

     ↓

train_model

     ↓

evaluate_model

     ↓

[Optional: deploy_model or generate_report]



You can extend this with branching (BranchPythonOperator), conditionals, retries, failure alerts, and parallel processing.


🧩 Advanced Tips


Use XComs to share data between tasks.


DockerOperator/KubernetesPodOperator to run training in containers.


Task decorators (@task) from Airflow 2.x to simplify task definition.


Use Airflow Variables/Connections for secrets and config.


Add email or Slack alerts for failures.


πŸ“š Example Libraries to Integrate


pandas, scikit-learn — Data manipulation and ML


boto3, google-cloud-* — For cloud storage


mlflow — Model tracking


prefect, dagster — Alternatives if Airflow is too heavyweight


πŸ“¦ Deployment Options


Run Airflow locally for development.


Use Docker Compose for isolated environments.


Use Astronomer, MWAA (Managed Workflows for Apache Airflow on AWS), or Google Cloud Composer for production.


✅ Summary Checklist

Task Done?

Install and configure Airflow

Write Python functions for steps

Create DAG and define dependencies

Test DAG in development

Schedule and monitor

Learn Data Science Course in Hyderabad

Read More

Using Streamlit for Building Data Science Applications

How Docker and Kubernetes Help in Data Science Deployment

Introduction to FastAPI for Data Science Applications

How to Use Apache Spark for Big Data Analytics

Visit Our Quality Thought Training Institute in Hyderabad

Get Directions

Comments

Popular posts from this blog

Understanding Snowflake Editions: Standard, Enterprise, Business Critical

Installing Tosca: Step-by-Step Guide for Beginners

Entry-Level Cybersecurity Jobs You Can Apply For Today