How to Build a Simple Chatbot with a Pre-trained LLM

 ๐Ÿ’ฌ How to Build a Simple Chatbot with a Pre-trained LLM

This guide walks you through the steps using Python, OpenAI API, or Hugging Face Transformers.

๐Ÿงฐ Tools You'll Need

Option A: Use OpenAI API (easiest)

Python

openai Python package

OpenAI API key

Option B: Use Hugging Face Transformers (runs locally)

Python

transformers and torch packages

A pre-trained LLM from Hugging Face

๐Ÿ› ️ Step-by-Step (Option A Using OpenAI API)

๐Ÿ”น Step 1: Install the OpenAI SDK

pip install openai

๐Ÿ”น Step 2: Get Your API Key

Sign up at https://platform.openai.com/

Get your API key from the API Keys page

๐Ÿ”น Step 3: Write a Simple Python Chatbot

import openai

# Set your OpenAI API key

openai.api_key = "your-api-key-here"

def chat_with_gpt(prompt):

response = openai.ChatCompletion.create(

model="gpt-3.5-turbo", # or gpt-4 if available

messages=[

{"role": "system", "content": "You are a helpful chatbot."},

{"role": "user", "content": prompt}

]

)

return response['choices'][0]['message']['content']

# Example usage

while True:

user_input = input("You: ")

if user_input.lower() in ["exit", "quit"]:

break

reply = chat_with_gpt(user_input)

print("Bot:", reply)

Done! You now have a working chatbot using GPT.

๐Ÿ› ️ Step-by-Step (Option B Using Hugging Face Locally)

๐Ÿ”น Step 1: Install Required Libraries

pip install transformers torch

๐Ÿ”น Step 2: Load a Pre-trained Model

from transformers import pipeline

# Load a conversational pipeline

chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1")

# Chat loop

while True:

user_input = input("You: ")

if user_input.lower() in ["exit", "quit"]:

break

response = chatbot(user_input, max_new_tokens=100, do_sample=True)

print("Bot:", response[0]['generated_text'])

๐Ÿ“ Note: Large models like Mistral, LLaMA, or Falcon require a good GPU. You can use Google Colab or Hugging Face Spaces if you don’t have local hardware.

๐ŸŒ Optional: Add a Web Interface with Streamlit

pip install streamlit

# save as chatbot_app.py

import openai

import streamlit as st

openai.api_key = "your-api-key-here"

st.title("๐Ÿ’ฌ Simple Chatbot")

user_input = st.text_input("You:")

if user_input:

response = openai.ChatCompletion.create(

model="gpt-3.5-turbo",

messages=[

{"role": "system", "content": "You are a helpful chatbot."},

{"role": "user", "content": user_input}

]

)

st.text_area("Bot:", response['choices'][0]['message']['content'], height=200)

Run it:

streamlit run chatbot_app.py

๐Ÿง  Tips for Customizing Your Chatbot

Change the system prompt to give it a personality:

“You are a sarcastic chatbot.”

“You are a personal tutor for 10th grade math.”

Add memory by saving previous interactions in the messages list.

Add context by feeding in user profile data or past queries.

๐Ÿš€ Bonus: Try Pre-trained Chatbots on Hugging Face

No code needed just use these:

Hugging Face Chat UI

Try models like mistralai/Mistral-7B-Instruct, google/flan-t5-xl, or meta-llama/Llama-2-7b-chat

๐Ÿ“ฆ Summary

Approach Best For Pros Cons

OpenAI API Quick & easy chatbot Fast setup, reliable results Requires internet & API key

Hugging Face + Transformers Running locally Free after setup, customizable Requires more compute

Streamlit UI Simple web app Interactive front-end Extra steps to deploy

Learn AI ML Course in Hyderabad

Read More

Generative AI Explained: From GANs to Diffusion Models

How to Build a Portfolio While Learning AI and Machine Learning

How to Choose Between a Master’s Degree or Online Courses in AI

From Zero to Hero: Building Your AI and ML Career

Comments

Popular posts from this blog

Entry-Level Cybersecurity Jobs You Can Apply For Today

Understanding Snowflake Editions: Standard, Enterprise, Business Critical

Installing Tosca: Step-by-Step Guide for Beginners