Step-by-Step Guide to Building a Text Classification Model
1. Define the Problem
Text classification assigns predefined categories to text documents. Examples include:
Spam detection (spam or not)
Sentiment analysis (positive, neutral, negative)
Topic classification (sports, politics, tech, etc.)
2. Collect and Prepare the Dataset
You can use datasets from sources like:
Kaggle
Hugging Face Datasets
Scikit-learn (e.g., 20 Newsgroups)
Example: IMDB Movie Reviews Dataset
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Load dataset
vocab_size = 10000
max_len = 200
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=vocab_size)
x_train = pad_sequences(x_train, maxlen=max_len)
x_test = pad_sequences(x_test, maxlen=max_len)
3. Preprocess the Text
If you're not using a preprocessed dataset:
Clean the text (remove punctuation, lowercase, etc.)
Tokenize (convert text to integers)
Pad sequences to equal length
Using Keras Tokenizer:
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
tokenizer = Tokenizer(num_words=10000, oov_token="<OOV>")
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
padded = pad_sequences(sequences, maxlen=200, truncating='post')
4. Build the Model
Use an embedding layer + a deep learning architecture (like LSTM, GRU, or CNN).
Example: LSTM Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
model = Sequential([
Embedding(input_dim=vocab_size, output_dim=128, input_length=max_len),
LSTM(64, return_sequences=False),
Dropout(0.5),
Dense(1, activation='sigmoid') # For binary classification
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
5. Train the Model
history = model.fit(
x_train, y_train,
epochs=5,
validation_data=(x_test, y_test),
batch_size=64
)
6. Evaluate the Model
loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {accuracy*100:.2f}%")
Optional: Plot accuracy/loss graphs to see model performance over epochs.
7. Make Predictions
predictions = model.predict(x_test)
predicted_classes = (predictions > 0.5).astype("int32")
8. (Optional) Save and Load the Model
# Save
model.save("text_classification_model.h5")
# Load
from tensorflow.keras.models import load_model
model = load_model("text_classification_model.h5")
๐ง Alternatives and Improvements
Use pretrained embeddings (like GloVe or Word2Vec)
Fine-tune transformers (like BERT) for better accuracy
Try data augmentation for small datasets
Implement attention mechanisms
๐ ️ Tools and Libraries
TensorFlow / Keras – for building and training models
Scikit-learn – for metrics and preprocessing
NLTK / SpaCy – for natural language preprocessing
Hugging Face Transformers – for state-of-the-art models like BERT
Learn AI ML Course in Hyderabad
Read More
How AI is Enhancing Language Translation Systems
Creating a Sentiment Analysis Model with Machine Learning
How to Use Pre-trained Models for Natural Language Processing
Subscribe by Email
Follow Updates Articles from This Blog via Email
No Comments