Monday, November 24, 2025

thumbnail

Step-by-Step Tutorial: Implementing Grover’s Algorithm

 🌀 Grover’s Algorithm Tutorial


Grover’s algorithm is a quantum search algorithm that finds a marked item in an unsorted database of size 

𝑁

N in roughly 

𝑂

(

𝑁

)

O(

N


) steps, faster than classical 

𝑂

(

𝑁

)

O(N).


We’ll implement it step by step for a small example.


1️⃣ Prerequisites


You need Python and Qiskit installed:


pip install qiskit matplotlib



Then import libraries:


from qiskit import QuantumCircuit, Aer, execute

from qiskit.visualization import plot_histogram

import numpy as np


2️⃣ Define the Problem


Suppose we have a 2-qubit database with 4 states: 00, 01, 10, 11. We want to find the marked element |11⟩.


Number of qubits = 

𝑛

=

2

n=2


Number of iterations ≈ 

𝜋

4

𝑁

4

π


N



n = 2

N = 2 ** n

marked_state = '11'

iterations = int(np.floor(np.pi/4 * np.sqrt(N)))

print(f"Iterations needed: {iterations}")


3️⃣ Step 1: Initialize Qubits in Superposition


Grover starts with uniform superposition using Hadamard gates:


qc = QuantumCircuit(n)


# Apply Hadamard to all qubits

qc.h(range(n))

qc.barrier()

qc.draw('mpl')



Now all states have equal probability 

1

𝑁

N


1


.


4️⃣ Step 2: Define the Oracle


The oracle flips the phase of the marked state.


For |11⟩, we can implement it with a controlled-Z gate:


def oracle(qc):

    qc.cz(0, 1)  # Phase flip for |11>

    qc.barrier()



If the marked state was different, we’d adjust controls/NOTs.


5️⃣ Step 3: Implement the Diffusion Operator


The diffusion operator amplifies the probability of the marked state:


Apply Hadamard to all qubits


Apply X to all qubits


Apply multi-controlled Z (phase flip for |00⟩)


Apply X and Hadamard again


def diffuser(n):

    qc = QuantumCircuit(n)

    qc.h(range(n))

    qc.x(range(n))

    qc.h(n-1)

    qc.mcx(list(range(n-1)), n-1)  # multi-controlled X

    qc.h(n-1)

    qc.x(range(n))

    qc.h(range(n))

    qc.barrier()

    return qc


6️⃣ Step 4: Apply Grover Iterations


Now we combine oracle + diffuser for the required number of iterations:


for _ in range(iterations):

    oracle(qc)

    qc += diffuser(n)


7️⃣ Step 5: Measure Qubits

qc.measure_all()

qc.draw('mpl')


8️⃣ Step 6: Simulate the Circuit

backend = Aer.get_backend('qasm_simulator')

result = execute(qc, backend, shots=1024).result()

counts = result.get_counts()

print(counts)

plot_histogram(counts)



✅ You should see the marked state 11 appears most of the time, demonstrating Grover’s quadratic speedup.


9️⃣ Optional: Run on a Real Device

from qiskit import IBMQ


# Load your IBM Quantum account

IBMQ.load_account()

provider = IBMQ.get_provider(hub='ibm-q')

backend = provider.get_backend('ibmq_qasm_simulator')


result = execute(qc, backend, shots=1024).result()

counts = result.get_counts()

plot_histogram(counts)


Summary of Steps


Initialize qubits in superposition


Define the oracle for the marked state


Implement the diffusion operator


Apply oracle + diffuser iterations


Measure the qubits


Run on simulator or real quantum device

Learn Quantum Computing Training in Hyderabad

Read More

Bonus: Deep Dives & Tutorials

Quantum Computing Myths Debunked

Quantum Computing and IoT: Course Content Exploration

The Environmental Impact of Quantum Computing Courses

Visit Our Quality Thought Training Institute 

Get Directions

Subscribe by Email

Follow Updates Articles from This Blog via Email

No Comments

About

Search This Blog

Powered by Blogger.

Blog Archive